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C. Posttranslational Modifications 
In addition to the complications introduced by splicing 

and variable transcription start and stop sites, certain amino 
acids in a protein can be chemically modified after 
translation. This process, posttranslational modification 
(PTM), often plays a crucial role in regulating the activity 
of the protein. For example, phosphorylation involves the 
addition or removal of phosphate groups and can activate 
or inactivate a protein. PTMs such as phosphorylation can 
also affect protein-protein interactions depending on the 
charge or shape of the binding surface of a protein. Another 
important regulatory mechanism is the binding of small 
molecules, producing changes in protein structure and, 
therefore, activity (allostery). An example of allostery is 
the binding of metabolic products, such as intermediates in 
sugar metabolism, to metabolic enzymes to modify flux 
through the pathway. Posttranslational modifications are 
also used by the cellular machinery to mark specific 
proteins to be broken down into their constituent amino 
acids. In a process called ubiquitin- mediated degradation, 
a small protein molecule called ubiquitin covalently 
attaches to a specific amino acid in a protein; when many 
ubiquitin molecules form a chain, the protein is targeted for 
degradation by a cellular structure called a proteasome. 
 
D. Experimental Techniques in Proteomics 

Protein structural analysis has a long history. The 
number of known protein sequences began to increase 
rapidly when Edman developed a method for sequencing 
proteins and peptides from the N-terminus one amino acid 
residue at a time, a method automated by Beckman in the 
1960s [23]. Several laboratories with these automated 
sequencers maintained databases of the published 
sequences in order to identify duplicates. Dayhoff exploited 
these databases to provide the first analyses of evolutionary 
relationships among proteins [24]. Several databases once 
competed (reviewed in [25]), but were eventually 
normalized by agreement. The molecular biology 
revolution soon shifted the emphasis from protein 
sequencing to oligonucleotide sequencing, and the rate of 
publication of new sequences rose exponentially (since 
protein sequences could be inferred from the nucleotide 
sequences). Today, the major challenge is to combine 
protein and genomic databases to provide a user-friendly 
resource for the research community. In parallel with the 
development of protein sequence databases, 3-D structures 
of proteins were laboriously determined by X-ray 
crystallography. The development of the Protein Data 
Bank, a database of these structures [26], has led to 
methods for predicting structures from sequences either by 
homology or de novo (see article by Ison et al.). The 
availability of this vast array of structures (over 25,000 at 
the time of writing) provides a rich field for data mining as 
well as for theoretical and physical studies aimed at a 
deeper understanding of the nature of proteins. Today, 
proteomics encompasses several global techniques for 
studying large samples of proteins. Two-dimensional gel 

electrophoresis is a technique that separates proteins by 
size and pH, giving a “fingerprint” of the proteins in a 
sample, which can be used to identify changes in specific 
proteins [27]. More recently, multidimensional 
chromatography has been used to separate proteins, which 
are then analyzed by mass spectrometry (MS). Although 
the proteins are usually digested, the ultimate goal is to 
directly analyze the intact proteins by MS (referred to as 
top-down proteomics).  

This will most likely require many years of methods 
development due to the difficulty of getting proteins into 
the gas phase for analysis. An emerging method referred to 
as shotgun or bottom-up proteomics takes advantage of the 
fact that peptides are much easier to analyze than whole 
proteins. In shotgun proteomics, all the proteins in a sample 
are digested into peptides, which are then separated by their 
chemical or physical properties. Fragmentation spectra are 
then collected through two rounds of mass spectrometry 
(tandem MS/MS), allowing identification of the 
corresponding peptide sequences., “Enabling Proteomics 
Discovery Through Visual Analysis”). However, 
cataloging the expressed proteins that correspond to a set of 
peptides remains challenging. Genome-wide, two-hybrid 
screens can reveal which proteins interact. Two-hybrid 
screens identify interactions by fusing one protein with a 
DNA-binding domain and a second protein with a 
transcription activation domain; the pairs of proteins that 
interact will induce expression with a reporter (a protein 
whose activity can be easily measured, such as the 
fluorescent protein GFP) [28]. A full description of a 
protein requires knowledge of its 3-D structure, which can 
assist in inferring its function. Structural proteomics is the 
determination of this 3-D structure. There are two basic 
approaches to structural proteomics. The first approach, 
direct determination, is conducted in the laboratory using 
methods such as X-ray crystallography and NMR. The 
major barrier to high-throughput direct determination is the 
preparation of suitable samples; X-ray crystallography 
requires crystals that diffract well, while NMR requires 
samples of soluble proteins smaller than 300 amino acids. 
Although many proteins are insoluble, small proteins are 
abundant in most proteomes, suggesting that NMR may 
have an increasing role in structural proteomics. Because 
many proteins are evolutionarily related, direct 
determination of a few structures allows others to be 
modeled. The second approach in structural proteomics is 
to use purely computational methods to predict a protein 
structure.  
 
E. Key Challenges in Proteomics 

Although proteomics techniques are growing 
increasingly powerful, many challenges still need to be 
overcome. The articles in this issue provide interesting 
approaches to address many of these challenges. It is not 
possible in a short review to encompass all the issues to be 
addressed in all areas related to proteomics. Instead, we 
will focus on one area (shotgun proteomics) that 
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demonstrates how the interplay between experimental and 
computational improvements can drive a field. The 
development of new MS instrumentation with increased 
sensitivity, along with better ionization methods for 
peptides, granted the protein chemist unprecedented 
analytical power for tackling complex systems. The 
development of algorithms that could use information from 
the MS data to identify the peptide sequences has also been 
critical. MS instruments allow information about peptide 
fragmentation to be collected in a high-throughput, 
automated fashion. Since each peptide should theoretically 
produce a unique spectrum of ions depending on the 
sequence of the peptide, the peptide fragments collected 
provide the input for determining the sequence. After 
identifying all the peptide sequences in a sample, it should 
be possible to identify the proteins and, consequently, the 
biological processes that are most active. However, several 
challenges remain before the dream of global sample 
analysis can be realized. 
 
1) Identifying the Sequence of a Peptide from Its 
Fragmentation Spectrum 

Because each MS/MS run produces many spectra that 
vary in quality, there is no robust way to directly determine 
a peptide from each spectrum. Software such as MASCOT 
[30] and SEQUEST [31] compare each measured peptide 
spectrum to theoretical spectra generated from a protein 
database, assigning scores to each match. Each spectrum 
often matches many peptides in the peptide database. 
Existing algorithms have alarmingly high false-positive 
rates, especially when the database contains many short 
sequences. Mapping peptide spectra to peptide sequences 
remains one of the most challenging problems in the field 
of proteomics.  
2) Identifying the Set of Proteins from a Set of Peptides 

A proteomics sample typically contains thousands of 
proteins, which must be identified by mapping peptides 
identified from mass spectra onto a protein database. 
Unfortunately, protein databases are often highly 
redundant, incomplete, and/or incorrect since the 
deposition of protein sequences is uncontrolled. Therefore, 
each identified peptide is mapped to many redundant 
entries, causing errors when few peptides are recovered per 
protein. Furthermore, the raw sequencing data can often fit 
more than one sequence because complete coverage of the 
peptide sequence may not be achieved. Statistical methods 
for evaluating the search results are urgently needed. 
 
3). Resolving Isoforms of RNA and Proteins 

Isoforms, produced by alternative splicing or through 
multigene families, often have almost identical sequences. 
However, different isoforms can have distinct functions in 
cell signaling (for instance, cells can shift the isoform 
patterns of metabolic proteins in response to the amount of 
oxygen). Since shotgun proteomics cannot find every 
peptide information about different isoforms (or PTMs) is 
often unavailable. Identifying PTMs raises similar issues. 

PTMs such as phosphorylation and ubiquitination modify 
only a few residues in a protein and therefore modify only 
a few of its constituent peptides. However, these peptides 
are usually in such low abundance that they must be 
enriched through chemical techniques before they can be 
detected. These modification processes are usually 
reversible, so peptides often come in both modified and 
unmodified forms. In “Quantitative Analysis of Proteomics 
Using Data Mining,” Yen et al. describe a novel method for 
automated quantification of protein isoforms.Such 
quantification can be achieved by the manual analysis of 
mass spectrometry signals combined with a deep 
knowledge of biochemistry, but this process is highly labor 
intensive and error prone. 
 
4). Determining the Amount of Each Protein Expressed, 
and Correlating These Amounts with Other Measures of 
Expression 

Differences in cellular activity are often caused by the 
differences in levels of specific proteins (or modified forms 
of proteins), and changes in the levels of proteins in 
particular signaling pathways often illuminate biological 
responses to specific conditions. Traditional laboratory 
techniques such as Western blots, which measure the 
binding of an antibody to one specific protein, are 
extremely accurate but do not scale to large numbers of 
proteins. Technologies such as isotope-coded affinity 
tagging (ICAT) [32] that can quantify proteins are 
immature for large-scale experiments, and their accuracy is 
far below that of microarrays (which measure RNA, not 
protein, levels). 

 
5) Identifying the Function of a Protein from Its Sequence 

Shotgun proteomics, in particular, identifies lists of 
thousands of proteins present in a specific sample. Yet, the 
functions of many of these proteins are unknown. One 
approach is to characterize proteins by shared motifs, 
which may be related to the protein’s function or 
regulation. In “Functional Proteomics with Biolinguisitic 
Methods,” Singh et al. use an n-gram strategy from 
computational linguistics. This strategy provides a 
functional representation of motifs in the sequences, 
transforming the protein sequence into a functional space 
where these representations may be compared using 
quantitative methods. An important aspect of protein 
functional identification is comparing the sequences as 
strings. In “Optimization Techniques for String Selection 
and Comparison Problems in Genomics,” Meneses et al. 
address two problems of suboptimal matching between two 
strings: the farthest string problem (FSP), which identifies 
the most distant string from a set of strings, and the related 
far from most string problem (FFMSP). These problems 
fall into a difficult category of problems known as NP-
hard, which do not have polynomial-time solutions, and 
only approximate solutions are practical. When comparing 
two strings, one needs first to decide on the metric 
(distance) to be used to determine the difference between 
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the two strings. One frequently used distance is the edit 
distance, which is the number of editing operations (like 
substitutions, deletions, and insertions) needed to transform 
one string into the other. 
 
6) Determining the Structure of a Protein from Its 
Sequence 

As discussed above, finding the 3-D structure of a 
protein given only its sequence remains an extremely 
challenging problem. One approach is to use data 
representations that reduce the information content, making 
structural computations more tractable by reducing the 
search space; yet, it can be hard to recover molecular 
details from such representations. Many structure 
prediction methods generate thousands of possible 
structures for a target amino acid sequence in a reduced-
content representation, but these must then be expanded 
and adjusted to approximate a real molecule. However, the 
expansion steps are computationally difficult and expensive 
and may produce unrealistic results. In this issue, Ison et al. 
describe a method to reconstruct difficult turn regions of 
proteins by referring to information about local 
conformational similarities found in all unrelated proteins. 
Refinement of possible structures and may also be used for 
comparing protein structures and searching structure 
databases. An initial step towards determining the 3-D 
structure of a protein is determining the 2-D structure, i.e., 
the pattern of helices and sheets.  
 
7) Finding Protein-Protein Interactions 

Studying individual proteins is only the first step. To 
understand the cell’s function, we must understand how 
proteins interact with one another. In “Data Mining in 
Protein Interactomics,” Chen et al. provide an overview of 
the process of collecting, analyzing, and visualizing protein 
protein interactions obtained from yeast two-hybrid assays. 
In particular, they address data representation issues for 
multiway interactions and interactions at different levels of 
abstraction as well as methods for resolving ambiguities 
and inaccuracies in the database. Providing visualization 
tools that allow the rapid manual curation of large 
interaction data sets is a major challenge. Also machine-
learning techniques can also be applied to develop a 
probabilistic model, the hierarchical aspect model, for 
learning and predicting protein-protein interactions. The 
key feature of this model is using existing knowledge about 
proteins, such as functional classes, as latent variables of 
protein-protein interactions. In this model, clustering these 
latent variables is further performed by the other latent 
variable. This model enables the prediction of new protein-
protein interactions. 

         II.CONCLUSIONS 

Proteomics is an exceptionally powerful technique that 
allows many questions to be asked about a particular 
biological sample. However, several advances would allow 
research questions to be answered far more accurately and 

efficiently. For example, proteomics currently depends on 
many user involvements.Significant efforts in process and 
data modeling is needed to structure data collection and 
databases in a way that enables the most compelling 
questions to be asked. Similarly, advances in 
instrumentation could greatly improve the efficiency and 
quality of the mass spectra over today’s standards. Finally, 
algorithms for matching spectra to sequences and for 
resolving the expression of different RNA and protein 
isoforms need to be completely overhauled to keep up with 
the massive amount of data. With these advances, we 
would be able to convert the large data sets being generated 
now into knowledge about biological systems and 
processes. Understanding even a single gene and all its 
products is a monumental task, especially when 
considering all the cells, developmental variations, disease 
forms, and isoforms. Global profiling is just beginning to 
scratch the surface. The most comprehensive study to date 
(ours) has sampled only an estimated 11% of the peptides 
in the soluble extract, which itself contains only 40%-50% 
of the number of total open reading frames in the cell 
(estimated at 12,000–15,000 based on DNA arrays). Top-
down approaches that begin with whole proteins are better 
(but more technically demanding), and studies to date have 
surveyed no more than 100 proteins. Studies of protein 
complexes are also providing interesting but puzzling data 
because there is so little overlap between comparable 
systems. The problems in proteomics should be a 
cautionary lesson, indicating that computational and 
experimental scientists engaged in this mighty enterprise 
need to develop new methods of validating, processing, and 
interpreting data. However, the problems encountered also 
provide insight into the complexity of life itself. 
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